پیشنهاد توابعِ فعال ساز بازه ای در شبکۀ عصبیِ بر پایه توابعِ شعاعی برای پیش بینی سیستم هایِ غیرِ خطیِ پویا

نویسندگان

الله یار ظهوری زنگنه

allahyar zohoori zangeneh unit 12, no. 58, shahid faramarz sobhani street(eleventh), nasr alley(gisha), tehran, iran, postal code 1447644796تهران، کوی نصر(گیشا)، خیابان شهید فرامرز سبحانی(یازدهم)، بعد از چهارراه چهارم، پلاک 58، واحد 12، کد پستی 1447644796 محمد تشنه لب

mohammad teshnehlab seyedkhandan, dr. shariati ave,tehran, islamic republic of iran. p.o box: 16315-1355, electrical engineering faculty, control engineering group, k.n.toosi university of technology (k.n.toosi)تهران، خیابان شریعتی، نرسیده به پل سیدخندان، صندوق پستی 1355-16315، کد پستی 16314، قطب علمی کنترل صنعتی، دانشکده مهندسی برق، گروه مهندسی برق-کنترل، دانشگاه صنعتی خواجه نصیرالدین طوسی مجتبی احمدیه خانه سر

mojtaba ahmadieh khanesar international scientific cooperation office, electrical & computer engineering faculty, power & control group, semnan universityسمنان، میدان دانشگاه، روبروی پارک سوکان، پردیس شماره یک، سازمان مرکزی دانشگاه سمنان، دانشکده برق و کامپیوتر، گروه مهندسی قدرت و کنترل، دانشگاه سمنان

چکیده

چکیده: «شبکۀ عصبیِ بر پایۀ توابعِ شعاعی » یک تقریب گر عمومی می باشد. در این مقاله «تابعِ فعال ساز گرانولی» برای بهبود یادگیری این شبکه در شرایط نویزی پیشنهاد می گردد که یک تابعِ گاوسی با «انحراف استاندارد بازه ای و میانگین ثابت» است و به آن «تابعِ فعال ساز بازه ای» نیز گفته می شود. در لایۀ میانیِ این شبکه، سه پارامترِ وابسته به توابعِ فعال ساز گرانولی آموزش می بینند که «مرکز توابعِ فعال ساز گرانولی» که مرکز دسته نامیده می شود، کرانِ پائینِ انحرافِ استاندارد و کرانِ بالایِ انحرافِ استاندارد این توابع می باشند. در لایۀ خروجی دو پارامتر دیگر یعنی «مرکز وزن هایِ بازه ای» و «بازۀ این وزن ها» آموزش می بینند. برای آموزش این پارامترها از روش «الگوریتم خوشه بندی k-means» استفاده شده است. در این روش، آموزش شبکه در راستای «گرانوله سازیِ پائین به بالا» می باشد که در آن بردارهای ورودی به شکل گرانول های بزرگتر در لایۀ میانی خوشه بندی می گردند. از روش «گرادیان نزولی» نیز برای آموزش پارامترهای شبکه استفاده شده و نتایج با روش جدید مقایسه گردیده است. عملکرد این شبکه با شناساییِ «یک سیستمِ غیر خطیِ پویایِ u شکل با پنج ورودی» و پیش بینیِ «سریِ زمانیِ آشوب مکی گلاس» در شرایط نویزی و بدون نویز سنجیده می شود. از نتایج معلوم می گردد که استفاده از تابعِ فعال ساز گرانولی در ساختار شبکۀ عصبیِ rbf؛ باعث کاهش حساسیت به تغییرات ورودی شده و عملکرد آن در شرایط نویزی بهبود می یابد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیشنهاد توابعِ فعال سازِ بازه ای در شبکۀ عصبیِ بر پایه توابعِ شعاعی برای پیش بینی سیستم هایِ غیرِ خطیِ پویا

چکیده: «شبکۀ عصبیِ بر پایۀ توابعِ شعاعی » یک تقریب گر عمومی می باشد. در این مقاله «تابعِ فعال سازِ گرانولی» برای بهبودِ یادگیری این شبکه در شرایط نویزی پیشنهاد می گردد که یک تابعِ گاوسی با «انحراف استاندارد بازه ای و میانگین ثابت» است و به آن «تابعِ فعال سازِ بازه ای» نیز گفته می شود. در لایۀ میانیِ این شبکه، سه پارامترِ وابسته به توابعِ فعال سازِ گرانولی آموزش می بینند که «مرکزِ توابعِ فعال سازِ گرانولی» که ...

متن کامل

مقایسۀ توابع یادگیری شبکۀ عصبی در مدل‏سازی رواناب

پیش‏بینی دقیق جریان در رودخانه‏ها یکی از ارکان مهم در مدیریت منابع آب‏های سطحی به‌ویژه اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالی‏ها‌ست. در‌حقیقت، حصول روش‏های مناسب و دقیق در پیش‏بینی جریان رودخانه‏ها را می‏توان به‌عنوان یکی از چالش‏های مهم در فرایند مدیریت و مهندسی منابع آب دانست؛ اگر‌چه تحقیقات وسیعی در خصوص کاربرد روش‏های متکی بر شبکه‏های عصبی مصنوعی دقت این روش‏ها بر روش‏های متداول آ...

متن کامل

تقریب تابع ارزش عمل با استفاده از شبکه توابع پایه شعاعی برای یادگیری تقویتی

مشکل تنگنای ابعاد، یکی از چالش هایی است که کاربرد الگوریتم های یادگیری تقویتی گسسته را در مورد مسائل کنترلی واقعی که دارای فضای حالت و عمل بزرگ و یا پیوسته می باشند محدود نموده است. ترکیب روش های آموزشی گسسته با تقریب زننده های تابعی برای حل این مشکل چندی است مورد توجه محققان قرارگرفته است. در همین راستا در این مقاله یک الگوریتم جدید یادگیری تقویتی عصبی (NRL) بر مبنای معماری نقاد- تنها معرف...

متن کامل

مدل‌سازی محتوای الکترونی کلی بر حسب توابع پایه شعاعی کروی در منطقه ایران

مدل‌سازی پارامترهای چگالی الکترونی یونسفر (IED) و محتوای الکترونی کلی (TEC) در تعیین موقعیت ماهواره‌ای با گیرنده‌های تک فرکانسه، مطالعات فیزیک فضا، عملکرد سیستم‌های راداری و ارتباطات مخابراتی ضروری است. مدل‌های مرجع بین‌المللی یونسفر (IRI) و نقشه‌های جهانی یونسفر (GIMs) منابع اطلاعاتی هستند که TEC را در مقیاس جهانی در اختیار کاربران قرار‌می‌دهند. این مدل‌ها از منابع داده‌های جهانی به‌دست آمده‌ا...

متن کامل

شبکه های عصبی شعاعی آموزش یافته بر پایه متغیرهای مدل‌های آماری و مقایسه آن‌ها در پیش بینی ورشکستگی

امروزه شبکه های عصبی مصنوعی جایگاه ویژه ای در حیطه مالی پیدا کرده است. پژوهش حاضر به دنبال یافتن روش بهتر برای ساخت و آموزش شبکه های عصبی مصنوعی است که منجر به پیش بینی دقیق‌تر در موضوع ورشکستگی شود. در این میان سه شبکه عصبی از نوع توابع شعاع مدار ساخته شد که به صورت جداگانه توسط متغیرهای مدل آلتمن (1983)، اسمایوسکی (1984) و ترکیبی آموزش داده شدند. پس از سنجش توانایی سه مدل در پیش بینی ورشکستگی...

متن کامل

استفاده از رگولاریزاسیون خطی برای پیش بینی توابع توزیع دارای چند پیک در جاذبهای ناهمگن

تابع توزیع انرژی برای جاذب های ناهمگن یکی از مهمترین مشخصات ساختمانی محسوب می شود. بدست آوردن این تابع توزیع از اهمیت خاصی برخوردار است. همانطور که می دانید میزان ماده جذب شده بر روی یک جامد ناهمگن معمولا بوسیله معادله انتگرال فردهولم نوع اول بیان می شود. معادله مذکور متشکل از یک کرنل (ایزوترم جذب ) و یک تابع توزیع نامشخص می باشد. جواب معادله انتگرالی جذب در حالت کلی ناپایدار است از این رو در ا...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
کنترل

جلد ۹، شماره ۴، صفحات ۱-۲۵

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023